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Usually, non-stationary numerical calculations in electromagnetics are based on
the hyperbolic evolution equations for the electric and magnetic fields and leave
Gauss' law out of consideration because the latter is a consequence of the former and
of the charge conservation equation in the continuous case. However, in the simula-
tion of the self-consistent movement of charged particles in electromagnetic fields, it
is a well-known fact that the approximation of the particle motion introduces numer-
ical errors and that, consequently, the charge conservation equation is not satisfied
on the dicrete level. Then, in order to avoid the increase of errors in Gauss’ law, a
divergence cleaning step which solves a Poisson equation for a correction potential
is often added. In the present paper, a new method for incorporating Gauss’ law
into non-stationary electromagnetic simulation codes is developed, starting from a
constrained formulation of the Maxwell equations. The resulting system is hyper-
bolic, and the divergence errors propagate with the speed of light to the boundary
of the computational domain. Furthermore, the basic ideas of the numerical approx-
imation are introduced and the extended hyperbolic system is treated numerically
within the framework of high-resolution finite-volume schemes. Simulation results
obtained with this new technique for pure electromagnetic wave propagation and for
an electromagnetic particle-in-cell computation are presented and compared with
other methods. © 2000 Academic Press

1. INTRODUCTION

From the beginning of simulating the self-consistent movement of charged particles
electromagnetic fields with particle-in-cell (PIC) methods [3, 13], ithas beenrecognized t
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the charge conservation equation may be violated on the discrete level by the approxime
procedure itself. As a consequence, unphysical particle orbits may occur [4] resulting
the fact that the solution of the Maxwell-Vlasov model equations runs into unrealis
regimes or may even become unstable. Although the numerical problems are generate
the particle treatment, it is common practice to correct the calculated electrical field fr
the time-dependent Maxwell equations in order to adjust it to the given charge den
[3]. In most cases this is done by deriving, from the divergence constraint establishec
Gauss’ law, a Poisson equation for a correction potential whose gradient improves
electrical field in agreement with the charge density at hand. However, solving this Pois
equation numerically requires much computational effort, the extension to non-regular ¢
arrangements is difficult, and the parallelization is cumbersome. In order to avoid solv
the elliptic Poisson equation, Marder proposed in the field of PIC computations anot
ansatz resulting in a hyperbolic-parabolic system of equations [24]. Further investigati
into this ansatz performed by Nielsen and Drobot [29] and Langdon [19] revealed mi
detailed insight into its mathematical structure and led to some algorithmic improvemel
For a finite-element method Assoesal. [2] introduced a constrained formulation of the
Maxwell equations and enforced Gauss’ law by a penalization technique. Within the fini
element framework the divergence equations may also be taken into account using
least-squares method [16, 17].

In this paper we introduce a new technique to include the divergence constraint du
Gauss' law. For that, we reformulate the so-called constrained formulation of the Maxw
equations by adding a coupling terminto Gauss’ law that results in a purely hyperbolic mc
system. The decisive advantage of this approach is that the explicit methods used fo
Maxwell equations can be extended to the purely hyperbolic systemin a straightforward v
yielding a very efficient and highly flexible Maxwell solver module for PIC applications.

The organization of the present article is as follows. After the introduction of the governi
equations and a brief review of the numerical situation in Section 2, different diverger
correction techniques are discussed from a general viewpoint in Section 3. Afterwa
in Section 4 the numerical framework for the purely hyperbolic Maxwell system is pr
sented in more detail. In addition, the high-resolution finite-volume (FV) approach f
the purely hyperbolic model equations is briefly given, and the numerical approximatic
are outlined, including the implementation of some relevant physically occurring, as w
as computationally motivated, boundary conditions. Section 5 deals with some numer
results obtained from a purely electromagnetic field computation and from a PIC simL
tion experiment, showing the quality and properties of the applied approximation me
ods. Finally, conclusive remarks and a short outlook of the further activities are given
Section 6.

2. GOVERNING EQUATIONS

2.1. The Maxwell equations.The evolution of the electromagnetic field is given ac-
cording to the full set of the Maxwell equations

oE j
= _@yxB=-—1, (2.1a)
ot €0

9B
S HVXE=0, (2.1b)
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V.-E= ﬁ’ (2.1¢)
€0
V.B=0, (2.1d)

whereE, B, p, andj denote the electric field, the magnetic induction, the charge, and tl
current density, respectively. We consider a bounded dof2aira homogeneous medium
where the permittivity and the magnetic permeability are constant and chosen to be e
to one. The permittivity and permeability of free spag@nd o, respectively, are related
to the speed of light according tg/.0c? = 1. The well-known fact that the divergence of
the curl of any differentiable vector field is zero leads with (2.1a) and (2.1c) to the chat
conservation equation

ap .
— +V.j=0. 2.2
s TV 0 (2.2)

On the other hand, if (2.2) is valid for all times and if the initial data for the electric fiel
and magnetic inductioRy andBy satisfy (2.1c¢) and (2.1d), respectively, then the solutior
of (2.1a) and (2.1b) automatically satisfies Gauss’ law (2.1c¢) and (2.1d) for all times.

2.2. Maxwell equations when charge conservation is not satisfigidxwell solvers are
usually based on the hyperbolic evolution equations (2.1a) and (2.1b) only, leaving the el
tic part of the Maxwell system (2.1c) and (2.1d) out of consideration. This is motivated by t
properties of the exact solution as outlined above. But in the discrete case, there may o
errors of different kinds that substantially disturb the numerical solution and, consequer
generate inconsistencies. Basically, the origin of these errors may be traced back to the
discretization method for the evolution equations (2.1a), (2.1b) and to the applied apprt
mation procedure for the charge and current density, the sources of the Maxwell equati

While the divergence of the curl of any differentiable vector field is always zero, tf
discrete approximation may satisfy this fact only approximately. From a more general pc
of view Hyman and Shashkov [15], Teixeira and Chew [32], and Schwvetlmal. [30]
derive approximations which satisfy discrete analogues of important vector identities. |
the Maxwell equations a finite-difference scheme that satisfies the discrete analogue o
div curl =0 relation has been originally proposed by Yee [36]. This approach was extenc
to curvilinear structured grids by Holland [14] and, furthermore, finite-volume formulatior
based on the Stokes theorem (see, e.g., [22]) which reduce to the classical Yee schel
the Cartesian case. All these schemes use a staggered grid arrangement where appro»
values of the electromagnetic field components are calculated at different locations wi
the grid and also at different time levels.

A finite-volume scheme on a collocated grid based on Gauss’ theorem has a much sim
data structure than that derived with Stokes’ theorem, and robust two-level explicit schel
may be constructed being second or even higher order accurate in both space and tin
this case a discrete analogue of ttie curl identity does not hold and small approximation
errors may appeatr. In pure field calculations and when the grid is not too distorted this e
often seems not to become a severe problem [1, 5, 11, 28].

Another kind of error occurs when the charge conservation equation (2.2) does not t
exactly. This somewhat strange physical situation arises when the Maxwell solver is u
as one part of an electromagnetic PIC code with which charged particle simulations
electromagnetic fields are performed in a self-consistent manner [3, 4, 26]. In the F
framework, the Lorentz force acting on each charge is obtained by interpolating the fie
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onto the locations of the particles. Then the new phase space coordinates of the particle
determined by solving numerically the classical Newton—Lorentz equations. Afterwar
charge and current densities are again assigned to the grid points using special locatiol
assignment techniques based on the applied interpolation scheme [3, 13, 25, 34]. T
approximation steps introduce numerical errors, and a discrete analogue of the ch
conservation equation (2.2) for the Maxwell solvers is not guaranteed to hold exac
Since only the current density is necessary for the numerical field calculation basec
the evolution equations (2.1a) and (2.1b), the consisten®¥-dE with the charge density

p may be lost. The consequence of this fact is demonstrated in Fig. 1, where the re
of a typical electromagnetic PIC simulation (discussed in more detail below) is depict
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FIG. 1. Temporal evolution of th&, field component (1, 3, and 5 ns) obtained from an electromagnetic PI(¢
simulation of a charged particle beam in an external static magnetic field. The numerical errors due to the
approximation are not corrected in the sequence of results plotted in the left column while for these depicte
the right column a standard correction approach is applied.
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There, snapshots of the temporal evolution (1, 3, and 5 ns) dEitfeeld component of a
radiating magnetic dipole are seen for the cases where the numerical error due to local ct
conservation violation is not corrected (left column) and where the inconsistency is remo
by applying a standard correction technique (right column). Clearly, we recognize from th
sequences that it is very important to enforce the divergence constraint (2.1c) in the con
of PIC simulations in order to avoid unphysical results as a consequence of not presen
charge conservation numerically. To get rid of this numerical problem, sophisticated parti
motion and current density approximations may help to ensure that a discrete analogu
(2.2) is satisfied (see, e.g., [8, 33]). However, a common solution, which we pursue
the present paper, is to enforce the divergence equations (2.1c) and (2.1d) of the Max
system by directly incorporating these conditions into the numerical approximations.

In the following, we restrict ourselves to describing the correction of the electric fiel
because the violation of charge conservation (2.2) influences only that part of the t
electromagnetic field. The incorporation of the constraint on the magnetic induction (2.
into the numerical algorithm may be done in a similar way.

2.3. The generalized Lagrange multiplier formulatiorn the case where the initial data
do not satisfy Gauss’ law (2.1c), or the charge conservation equation (2.2) is not fulfilled,
divergence constraint (2.1c) has to be coupled with the evolution equation for the electr
field E (2.1a). The standard technique in the context of PIC simulations is to apply first t
usual Maxwell solver and compute in a second step a potential whose gradient correct:
electrical field [4]. With respect to the zero charge density case, this correction step is ca
the projection approach, where the electrical field is projected into a space of divergence-
vector fields. Assoust al.[2] formulated this approach by introducing the correction poten
tials as a Lagrange multiplier into the evolution equation (2.1a) and applied a finite-elem
method to the set consisting of Egs. (2.1a), (2.1b), and (2.1c). We generalize the ansa
Assouset al. by defining, for a given linear differential operaf@(®), the set of equations

9E j

— -’V xB+cVd = ——, (2.3a)
ot €0
oB
L VxE=0, (2.3b)
ot
0
Po+V.E="L, (2.3c)
€0
V.B=0, (2.3d)

which we denote as the generalized Lagrange multiplier (GLM) formulation of the Maxwe
equations. The new variabfe introduced into the Maxwell equation (2.1a) defines an ad
ditional degree of freedom. Due to the differential operd®g®) in (2.3c), this variable
may be coupled with the divergence condition. Eqid) =0 the system (2.3) is the con-
strained formulation of Assoust al. [2]. Applying the divergence operator to (2.3a) and
differentiating (2.3c) with respect to time yields the following equation for the vari&ble

D@ L, , 1[0 .
—c°Vedp = —( —4+ V- . 24
at €0 \ ot * : 24

For a givenj and p, which now must not necessarily satisfy the charge conservatic
equation (2.2), and fob given as a solution of (2.4), it was shown in [27] that the systen
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(2.3) with appropriate initial and boundary data and under usual regularity conditions
mits a unique solution. Moreover, for suitable boundary conditions it can immediately
seen from (2.4) tha® vanishes when the continuity equation (2.2) is fulfilled. Hence, ii
this case we get the true solution of the Maxwell equations (2.1). Some other theoret
results are discussed in [27] which guarantee that under the appropriate definifio® of
the divergence errors do not increase in time and that (2.1a) and (2.1c) are approxim:
satisfied. In the present paper we focus our attention on the numerical approximatiol
the GLM Maxwell system (2.3). For that, the type of the partial differential equation (2.
for different differential operator®(®) can be used to classify the different numerical
approximation techniques for the system (2.3) discussed in the following sections.

3. DIVERGENCE CORRECTION BASED ON THE REFORMULATED
MAXWELL SYSTEM

We now investigate different types of the reformulated Maxwell equations (2.3). For th
we consider here three definitions of the differential oper®@b) and discuss briefly the
essential features of the numerical representation for the resulting formulations.

3.1. The hyperbolic-elliptic approach.The constrained formulation of the Maxwell
equations as proposed by [2] is obtained from the GLM Maxwell system (2.3) by taking

D(®) =0, (3.1a)

yielding from (2.4) the Poisson equation

1/0 .

—V2p = — (p V. j>, (3.1b)
€o \ Ot

for the correction potentiab. The constraint in this case possesses elliptical character a

the propagation rate of the correction is infinite. Assuming EhahdB satisfy the correct

imposed conditions at the boundary, we require homogeneous Dirichlet conditidns on

d(x, 1) =0 forx € 92 and allt > 0, (3.1¢)

whered2 denotes the boundary of the doma&in
Letus sketch briefly the numerical scheme. Using a splitting technique for the constrai
Maxwell’s equations (2.3a), one computes fE8t* such that
E_n+l _EN . in+1/2
7—c2VxB”+l/2=J—, (3.2)
At )
whereV @ is approximated implicitly in time, while all other parts are handled by a secon
order accurate scheme; thEf*! such that

En+1 _ E_n+1

N + Vo™t =, (3.3)
along with
" n+1
G = —pEO : (3.4)

which comes from the discretization of (2.3c). The tilde denotes the spatial discretizati
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which is not specified more precisely, as the following considerations are valid for differe
spatial discretization schemes.

Applying the discrete divergence operafoto Eq. (3.3) and substituting the divergence
of the electrical field, respectively, according to (3.2) and (3.4), the elliptic equation

_o2V2pntl — 1(:0%1_/)“ +V. jn+1/2> (3.5)
€0 At
for the potential is obtained, which is obviously the discrete analogue to (3.1b). Hen
this correction can be done in a two-step procedure; first by computing the solution of
usual Maxwell equations (2.1a), (2.1b) and then by adding a correction potential obtai
by solving (3.5). This fully implicit approximation with respect to the Lagrange multipliel
@ is identical to the method of Boris [4] and is usually called the projection method. In tl
correction step the elliptic equation (3.5) together with homogeneous Dirichlet bound:
conditions (3.1c) has to be solved, yielding finally the corrected field from (3.3). The me
disadvantages of this standard correction approach are that the projection procedure rec
a large computational effort and is cumbersome for a straightforward implementation
the numerical scheme on parallel platforms.
We remark that Assoust al. [2] solved the constrained formulation within a finite-

element framework and incorporated the correction using a penalization.

3.2. The pseudo-current or hyperbolic-parabolic approacho circumvent the difficul-
ties connected with the implementation of a Poisson solver, Marder [24] added a coup
term to Gauss’ law. This Marder ansatz is obtained from the GLM Maxwell system (2.
choosing the operatdp(®) to be

D(P) = %, (3.6a)

where the quantity may be interpreted as a characteristic time scale with seconds as u
By this choice Egs. (2.3a) and (2.3c) are atrtificially coupled with a strength depending
the magnitude of the quantity. Clearly, for large values of the constrained formulation
of Assouset al. [2] is obtained. The Marder approach may be called a parabolic ansatz
enforce charge conservation for the following reason. Inserting (3.6a) into (2.4) results
the inhomogeneous parabolic equation

aa—cf — V2D = g(g—f +V. j), (3.6b)
for the temporal evolution ob. Dividing this equation byy, we recognize immediately
that in the limity — oo the parabolic approach tends to the elliptic equation (3.1b) for th
correction potential. Moreover, the type of (3.6b) reveals something about the mechan
of the correction ansatz, namely, local errors of charge conservation are diffused awa
the function®. In the case where charge conservation (2.2) is satisfied, the right-hand <
of (3.6b) vanishes. This suggests the imposition of

P(x,00=0 forallx € , (3.6¢0)
d(x, 1) =0 forallx € 9 andt > 0 (3.6d)

as initial and boundary conditions d@n yielding ® =0 in the conservation case.
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The starting point for the numerical correction methoded$ found by inserting (2.3c)
with (3.6a) into (2.3a) yielding
E—czvXB:-‘——Xc2v<ﬁ—v.E). 3.7)
ot €0 €0
Here, Gauss’ law is directly incorporated as an additional current density source term |
Maxwell's equation—the reason why the Marder ansatz is also called the pseudo-cur
approach. For numerical purposes it seems to be reasonable to construct the ade
numerical scheme from (3.7) by applying source term splitting, where the pseudo-curt
is calculated explicitly. In this process, again the fiEft? is computed from Eq. (3.2).
Afterwards, this solution is used for the second step in order to compute the correc
electrical fieldE"*! att =t"+1
_ n _
Enl _ EnHL XCZ%(IZ _v. En+1> (3.8)
0
for Marder’s approached Maxwell formulation. Originally, in the scheme given by Mard:
the computations are performed the other way round. As a first improvement, the seque
(3.2), (3.8) has been proposed by Nielsen and Drobot [29] and Langdon [19]. Lang
pointed out in his article that these two steps can also be regarded as the first iteration s\
in solving the Poisson equation with a Jacobi iteration scheme. Nielsen and Drobot repo
in [29] that a large number of repeated iterations of (3.8) would asymptotically converge
the solution of Poisson’s equation (3.1b), whereas in practice a few iterations are suffici

3.3. The purely hyperbolic formulationThe new, strictly hyperbolic correction ap-
proach may be deduced from the GLM equations (2.3) cho@iid) as

109

D)= ——,
(®) 2 ot

(3.93)
where the—now—dimensionless parameteatetermines the strength of the artificial cou-
pling between (2.3a) and (2.3c). The temporal evolution of the défecgiven by inserting
(3.9a) into (2.4), yielding the inhomogeneous wave equation

2 2
% — (X022 = ’;(2’:+v- j>, (3.9b)
which is a hyperbolic partial differential equation, transporting information with the finit
propagation velocity ¢ out of the computational domain. As pointed out in [27] this defec
may also be interpreted as a general gauge condition and, hence, (3.9b) propagates s
the resulting gauge error. Note that the purely hyperbolic formulation is the only moc
system which is fully relativistic. Dividing (3.9b) by? yields that this hyperbolic equation
formally converges to the elliptic equation (3.1b) for the correction potential in the lim
x — oo and, consequently, establishes the hyperbolic-elliptic formulation. The size of 1
parametey is yet unknown and has to be estimated from numerical experiments. Howe\
the fact that the defe@ should be transported at least as fast as the electromagnetic fie
propagate results in the a priori choige> 1. Since the right-hand side of (3.9b) vanishes
if the charge conservation equation (2.2) holds, we require the initial conditions

d(x,00=0 forallx e @ (3.9¢)
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for @, ensuringd =0 in that case. In order to guarantee that the hyperbolic formulatic
(2.3) with (3.9a) satisfies the Maxwell equations (2.1) approximately for all times in tt
bounded domaif, we have to impose additionally the radiation condition

P 0D
— c— =0 forallx € 092, 3.9d
ot + X T € ( )

at the boundary<2 on @, where% =n - V& denotes the normal derivative at the border.
Such a boundary condition provides a stabilization of the wave equation (3.9b) at
truncated domain. Further boundary conditions stabilizing the wave equation at the bol
can be considered and are discussed, for instance, in [18]. Under the assumpni%% that
bounded on afinite time interval, the convergence of the purely hyperbolic solution towa
the hyperbolic-elliptic solution can be proved [27].

To construct a finite-volume scheme, we rewrite Egs. (2.3a), (2.3b), and (2.3c) with (3.

as a system of linear hyperbolic evolution equations
W = D
— —(Ajw) =5, 3.10a
TR ax; AW (3.102)

=1

where we restrict ourselves in the present description to two dimendibas?) in space.
The vector of the unknown quantities=w(x, t) is given by

W= (Eq, Ez, Es, By, By, B3, @)7. (3.10b)

The 7x 7 matricesA; with constant entries are defined as

2581
0 0 CZMJ' 0252j
0 0O O 0
Aj = 0 0 0 0 |; =12, (3.10c)
MJT 0 0 0 O
0 0 0 O
X281j X282]- 00 0 0 0

wheres;; denotes the usual Kronecker symbol and the two33matricesM ; are found to
be

0 0 O 00 -1
Mi=|0 0 1|, Mz=|0 0 0] (3.10d)
0 -1 0 10 0

The right-hand side of (3.10a) contains the current as well as the charge density and r
as

i . . .
s=—_ (v 2 Ja 0,0,0,—x%p)". (3.10e)
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For further discussion, the properties of the linear combination of the maifices
D D
A=>"nA;L with Y nf=1, (3.11a)
j=1 j=1

are important. In summary, we notice that the mattixe R’*’ possesses seven real
eigenvalues,

A =diagAy, ..., A7) =diag(—xc, —¢, —¢, 0, ¢, c, xC), (3.11b)
and a complete set of right eigenvect®s= (rq, ..., r7),
—ngZ N 0 —-mc 0 ni3
—nzf -nic 0 0 nic 0 ngf
0 0 —n—°2 0 0 n—°2 0
R = 0 0 1 1 0 1 0 (3.11c)
0 0 —2—; Q—j 0 —2—; 0
0 1 0 0 1 0
1 0 0 0 0 0 1

Hence, the considered extended Maxwell system is strictly hyperbolic.

4. NUMERICAL FRAMEWORK FOR THE HYPERBOLIC MAXWELL SYSTEM

In the following section we propose a finite-volume (FV) scheme on a collocated g
for the hyperbolic formulation introduced in the previous section.

4.1. Presentation of the numerical schem&he domain of computatiof = | J!\ ,C;
is covered by a set dfl non-overlapping grid zon€3;. The bordelC; of each grid zone
Ci consists of; edgesS z with lengthL; g, whereg runs from one tas; (for example,
oi = 3 for triangles ands; =4 for quadrilaterals). The solution is computed at a set ©
discretet” =nAt, whereAt is determined with respect to the CFL condition. Integrating
each component of the evolution system (3.10a) over the space-time vBjuarie", t"+1]
and applying Gauss’ theorem to the integral of the divergence of the flux components,
obtain the exact evolution equation

tn+1 tn+1

Oi D
Vi Wi —w] =—Z// > pipA; | wix, 1) dS dt+//sdv dt (4.1a)
Sp =1

B=1n tn G

where we replaced the line integral over the border by the sum of integrals over the ec
of Ci. Here W is the cell average afi over the cellC; with the area; at timet =t" given
by

W = é/w(x,t”)dv, (4.1b)
| &



494 MUNZ ET AL.

and(nj); g denotes thgth component of the outwards directed unit normg at the edge
S 4. The direct approximation of the integral formulation (4.1a) yields the FV schem
usually written in the form

At <
+1_
W =w — vig:lGﬂﬂ—l—Ats”. (4.2a)

The scheme is completely defined if the numerical fﬁ‘:ﬂg3 is specified as a suitable
approximation of the physical flux through the boundary efige which means

th+t

1
Gy ~ i / /Aiﬂw(x,t)det (4.2b)

th S

whereA; 4 is defined according to (3.11a). The vectbrapproximates the source term
(3.10e) averaged ov&t and the time intervaht =t"+1 —t". The main task in the context
of FV schemes is to find a suitable numerical flux (4.2b) as a function of the averag
guantities (4.1b). Moreover, as indicated by the superseripf the numerical flux in
(4.2a), we are interested in an explicit approximation of the fluxes using only the values
the previous time level=t".

4.2. Calculation of the numerical fluxIn this section we outline the path of approxi-
mations to obtain the numerical fllixffﬂ. In order to do that, we apply the second-order
midpoint rule to the integral (4.2b), yielding the first approximation

Gy = LigAi pw(Mi g, t"), (4.3)

where M; g denotes the midpoint of the ed@s. An approximation of the solution at
that midpoint is calculated by applying the method of Godunov [10] (for a review of the:
methods we refer to [21]). For the following, we assume that the approximated soluti
is constant in each grid zone and given according to the integral values (4.1b) at the t
levelt =t". Information about the break-up of the jump into propagating waves at the gt
zone interface§ g at M; g is provided by analyzing the local wave structure. This can b
performed by solving a Riemann problem (RPMatz into the direction of the normai; 4

(cf. Fig. 2). The RP at the time levek=t" is an initial-value problem of the form

w! for; <0
wh for¢ > 0O,

ow ow _

R T (4.4)

0 w(¢, 0) = {

where the coordinate is associated with the normal 5, andw andvv{‘ﬂ denote the initial
data in the grid zon€; and its neighbor celC;,, respectively. The solution of the RP
for the linear Maxwell equations is found by applying the theory of characteristics, f
instance, explicitly performed in [9, 28]. The exact solution of this initial-value problem i
the (¢, t)-plane for the approached hyperbolic Maxwell model is schematically depicted
Fig. 2. The characteristics associated with the eigenvalués ofcf. (3.11b)) separate six
constant statesg, wy, . . ., Ws, wherewy =w" andws :Wﬂﬁ are the initial data of the RP.
Replacing in (4.3) the termw(M; g, t") by the solution of the RP, the numerical flux of the
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w(Lt)

FIG. 2. Schematic solution of the Riemann problem in the direction of the nonmaat the interfaces »
between the grid zone3 andCiﬂ.

Godunov scheme is finally obtained and can be written as
Glp = Lip (AW + A7 pw ), (4.5a)
where the matriceAfﬂ are decomposed for later purposes according to
Ay =K, + Hf,. (4.5b)
Explicitly, these 7x 7 matricesK;", andH", are given by

+b%c Fabc O 0 0 —b&
Fabc +a’c 0 0 0 ac
1 0 0 4+c b -az 0

O O oo o o

=5 0 0 b +b% Fabc 0 , (4.5¢)
0 0 —-a Fabc +a’c O
—b a 0 0 0 +c
0 0 0 0 0 0 0]
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and
+a’yc 4+abxc 0 0 0 0 ac
+abyc +b?xc 0 0 0 O b
. 1 0 0 0 0 0O 0
Hy=5] o 0o 0000 O (4.5d)
0 0 0 0 0O 0
0 0 0 0 0O 0
ay? bx2 0 0 0 0 =+xc

where the abbreviatiorss=(n1);i g andb= (n,); s are used. The flux-vector splitting for-
mulation (4.5a) of the total numerical fl@{' , is a decomposition into a flux to the “right”
having positive eigenvalues only, and into a flux to the “left” having negative eigenvalu
only associated Withxfﬂ andAj 4 respectively. Obviously from (4.5a), the first matrix acts
on the left while the second one acts on the right initial state of the RP (cf. Fig. 2), honori
in that way the correct range of influence. These considerations are valid only if the time <
size is short enough to guarantee that the waves generated at different grid zone inter!
do not interact. This leads to the CFL time step restriction in the fpofy <1, whereh
denotes the smallest grid zone length. For Cartesian grids the FV scheme presented ¢
agrees with the Courant—Isaacson—Rees scheme [6], which is based on the characte
form of the equations. However, the Godunov approximation technique with the flux-vec
splitting formulation may be considered as an extension of this scheme to general
arrangements. Because the direction of the wave propagation is directly taken into accc
this numerical method is inherently very robust and able to resolve steep gradients witt
generating spurious oscillations. But in the described form, the Godunov scheme is c
first-order accurate in both space and time and introduces too much numerical dissipe
for practical calculations. This lack can be removed by an extension of the scheme to hig
order accuracy as proposed by van Leer in his MUSCL approach [20]: Instead of a piecev
constant, a piecewise linear reconstruction from the average values (4.1b) is used. T
improved approximations are then used to compute the new, now second-order accl
numerical flux via the RP. For a more comprehensive discussion of accuracy improven
we refer to [7, 21, 28].

4.3. Splitting approach. Another technique to solve the equations with the hyperbolit
correction is to apply a splitting scheme [23]. In order to do this, we consider the matric
Aj e IR”>*7 (3.10c) and recognize that they can split up into a sum of two matrices

A =K +Hj; i=12, (4.6a)

where the entries of the last column and row of the are shifted to thé<; while the
corresponding column and row of tig; are set equal to zero. A similar procedure of
decomposition can be performed for the solg¢@.10e) resulting in

s=q+dg

1. . . 1
= —"(j1,J2,j3,0,0,0,00" + =(0,0,0,0,0,0, x%0)". (4.6b)
€0 €0
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Obviously, this procedure transfers to the evolution equation (3.10a), leading to a dec
position in the suggestive form

ow D 0 D 0
— —(Kiw) —q = —§ —(H;w). 4.6
s+ 2 axj( W) —gq=g 2 ox, (Hjw) (4.6¢)

Here, the left-hand side represents nothing else than the Maxwell equations (2.1a)
(2.1b), being the starting point for an uncorrected FV-based Maxwell solver. At each ti
step, first the solver provides the solution of the uncorrected Maxwell equations (2.1a)
(2.1b) in the time domain

W(X, t,) = W(X, t") — At Lyc(W(X,t")), (4.7a)

wherew(x, t") denotes the charge corrected numerical solution of the previous tempc
iteration cycle andCyc is the spatial approximation OZ?:l(a/an)[’CjW(X, tM] —a.
Afterwards, the correction is performed according to

w(x, t" + (k + 1)At)
=w(X, t" + kAt) — AtLyc(W(X, t" + kAt)), k=0,...,x -1, (4.7b)

where Ly denotes the spatial discretization of the operﬂgﬁzl(a/axj)[?{jw(x, t"+
kAt)] — g. Definitively, this procedure has at least two advantages. First, and kind
Maxwell solver may be used for the solution of the uncorrected system, followed by
independent charge conservation correction computation. We remark that for this correc
step, approximations other than our FV approach may be applied. The second advar
concerns the choice of the free parameteThis quantity may be chosen in a way that the
corresponding correction propagation is larger than the speed of light, which would aff
the time step size due to the CFL condition. However, performing the charge correction
the proposed splitting approach, the stronger CFL restriction for the Maxwell solver col
be avoided by a sub-cycling technique for the correction computation choosing a sme
time step sizeAt and iterating the correction part several times.

From the structure of the matricés; or A; it is obvious that in two space dimensions
only the electrical field components;, E; and the potentiad enter into the hyperbolic
correction scheme. Additionally, we remark that the operat®(8/dx;) and?;(3/9X;)
commute for ali, j =1, 2 and, hence, no Strang splitting [31] is necessary to preserve t
order of the considered numerical scheme with respect to time.

4.4. Implementation of boundary conditiongAs already mentioned, we restrict our-
selves in the present paper to two spatial dimensions and describe boundary condition
the transverse electric (TE) field components. This means, besides the boundary condi
for the correction®, we have to investigate the boundary conditions for the field con
ponentsE, E,, and Bz more closely. Three-dimensional conditions can be obtained in
straightforward way.

In general, boundary conditions and their implementation for hyperbolic systems
well-posed if the wave propagation as given by the theory of characteristics is locally tal
into account. This may be established if the solution of initial-boundary-value problems
grid zones adjacent to the border of the computational domain is incorporated. It is poss
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border

computational domain layer of dummy grid cells

C
C|_ R

FIG. 3. The value in the dummy ce@ adjacent to the border grid zox is specified in such a way that
the solution of the Riemann problem at the borgler O (lower picture) yields the imposed boundary condition.

to reformulate these initial-boundary-value problems as Riemann problems, fitting m
properly in the numerical framework of FV methods. In order to do this, first dummy gri
cells are introduced, surrounding the domain of computation (cf. Fig. 3). Theninthese m
zones, values for the dependent variables are prescribed in such a way that the solutic
the RP at the border yields the physically imposed or computationally motivated bound
conditions. The main advantage of such a procedure is that imposing boundary condit
is equivalent to specifying appropriate values for the dummy cells which can be mana
in the first step of the computation cycle. In the second sweep, the discrete equati
can be solved without any further modification in the computational domain, leading tc
highly vectorizable algorithm. In the context of parallel code running, this technique see
also to be very attractive since data exchange of boundary values is necessary if dor
decomposition strategies are applied.

More precisely, to obtain the solution of the RP at the border of the computational dom
¢ =0(cf. Fig. 3), we apply the theory of characteristics and define the characteristic variat
v according to

V(¢ 1) = R7w(e, t), (4.8a)

whereR 1 is the inverse matrix of (3.11c). With this transformation the RP (4.4) can k
recast into a set of seven uncoupled linear transport equations whose solutions are give

w@ ) =@ —nt);  k=1,...,7 (4.8b)

with the initial valuesv® =R~lw(z, 0) and the propagation velocities, defined by
(3.11b). For the problem of interest, the relevant characteristic variables are schematic
depicted in Fig. 3 and explicitly calculated from (4.8a) at the botder0 according to

C
ViR = v:(LO)(XCt) = ZLC —aE]_’R — bEzyR + ;q)R y (493)

1
vR =03 (Ct) = E[b Eir —aExr+CcBgRl. (4.9b)



DIVERGENCE CORRECTION TECHNIQUES 499

1
vsL = g (—Ct) = %[_bEl,L +akEy L +cByy], (4.9c)

c
V7L = U;O)(—XCU = %: akE;| +bE + }CDL . (4.9d)

Here, the subscripR indicates that information is propagated from the dummyEglto
the border by the characteristic variabtgsand v, with the velocityr; = —xc andi, =
—c, respectively. The other way round, namely, the information transport and v;
from the border grid zon€, to the boundary of the domain with the speegd=c and

A7 = xC, is abbreviated by the subscript It is obvious that the latter two characteristic
variables are always determined by a condition of compatibility wiilg and v, g are
unknown and, consequently, have to be fixed in an appropriate manner. In terms of
characteristic variables (4.4), the solution of the RP at the boundary of the computatic
domainwg =w(0, t) reads as

c
wio = Ero= a;[—vl,R +v7.] + bdvar — vs], (4.10a)
c
w0 = Ezp = b;[—vl,R +v7 ] +ad—var+vs L], (4.10Db)
wso = Bzo=v2r+ V5L, (4.10c)
w70 = ®o =vi,r+ V7L, (4.10d)

where the characteristiag r and v, r are the variables which have to be calculated a
the boundary. This RP solution is completely determined if these unknown incoming cf
acteristic variables are specified. In the following we describe how to specify these t
characteristics for some relevant physically occurring as well as computationally motiva
boundary conditions.

4.4.1. Perfect conducting wall.The boundary condition of a perfect conducting wall,
where the fields cannot penetrate into the surface, reads as

nxEg=0, n-By=0. (4.11a)
These conditions lead to
aEyo—bE =0, Bz, is undefined (4.11b)
for the TE field components at the bordes 0. With (4.10a) and (4.10b), the first condition
yields that the incoming characteristig g is determined by, r = vs |, resulting in the
possible covering
Eir=—E1L, Eor=—E2L, Bsr=BsL (4.11c)
ofthe dummy grid zoneSg for the electromagnetic fields. The otherincoming characteristi
v1,r and, by that, a possible choice of the correctip in the dummy cells have to be

calculated from (4.10d) by prescribing the valbigof the correction at the boundagy= 0
in a suitable manner. In order to be more flexible for further investigations, we will consic
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in the present context the discretization of the more general radiation condition

[ )
aa_t + Xcg—g +vd=0 withv > 0, (4.12)
for the correctiond at the border. Clearly, this extended condition provides the radiatic
condition (3.9d) at the border=0 if v is fixed to zero. Choosing for the further consider-
ations a new functio® defined by the ansatz

(g, 1) = D, e, (4.13a)

the radiation condition (4.12) may be recast into an equivalent linear transport equatiot

3P 9P

— c— =0, 4.13b

at X% (4.13b)
at the borderz =0, having the solutionb (¢, t) = ®©@ (¢ — xct). As a consequence of
compatibility we assume that the border stdtelocated inside the computational domain
is transported within the time step sia¢ to the border. Hence, at the boundary 0 we
haved (0, At) = ®(—xcAt) = &, resulting with (4.13a) in

®g = (0, At) = & e A, (4.14)

which is a possible approximation of the value of the correction at the border. Inserting
last relation into (4.10d) and performing some rearrangements using (4.9a) and (4.9d)
obtain

SPr=ad —2%[8E1’|_ +bE2,|_] (4153)
with
« =26V 1 (4.15b)

for the covering of the dummy grid zon€s, where the prescriptions (4.11c) for the elec-
tromagnetic fields are used. Immediately from (4.14), two limit cases may be deduc
First, for the choices =0 (¢ =1) we obtain the “transmission cas&y,= ®_ which is

a direct result of the radiation condition (3.9d) at the boundary. Second, the “reflecti
case” is established by settingequal tov = +-co (¢ = —1). Obviously, this reflection case
leads to strong attenuation, resulting in the facthatanishes at the border of the computa-
tional domain. Itis judicious that the choices® < oo may be interpreted as compromises
between the two limit cases and denoted as the “mixed radiation case” for the correc
function ® at the boundary of the domain.

4.4.2. Irradiation condition. We denote by irradiation the process where energy il
the form of electromagnetic waves is irradiated at certain scheduled edges of the don
into the computational domain. Again, we restrict our discussion to the TE system &
assume that the incoming electromagnetic fields denoted(layt), €2(x, t), andBs(x, t)
are known at the border=0,

Eio=€1(0,1), Ezo=¢€2(0,1), Bso = B3(0, 1), (4.16a)

determining the incoming characteristic variable as

1
V20 = E[bél — aep + B3] (4.16b)
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However, we notice from Eq. (4.10c) that only two of the three components (4.16a) of 1
TE subsystem at =0 are important to know. For instance Hf o and E; o are given, the
magnetic induction at the border can immediately be computed as

Bso = v2r+ U5 L
1
= E[b(El,O —E11) —a(Ezo— E21) +CBs L], (4.16¢)
depending on values specifiedzat 0 and on those coming from the interior of the com-
putational domain. Using (4.9b) and (4.9c¢) in the explicit form, we further obtain from tt
last relation the following covering of the dummy grid zoitgas

Eir=2E10— E1L, Eor=2E0— Eo, Bsr = B3 (4.173)

for the electromagnetic fields to meet the imposed boundary conditipe=&x. In order

to specify the correctio® in the dummy cell<Cg, we assume that the value, at the
boundary is given, for instance by (4.14). Then, applying Eq. (4.10d) we calculate for
covering of the ghost cell8R the values

Pr =20y — P + Zé[a(ELo — Ey) +b(Ezo— E21)], (4.17b)

for the correction, where the result obtained for the TE fields (4.17a) is taken into acco

4.4.3. Truncated domain conditionComprehensive numerical simulations often re-
quire an artificial limit to the computational domain. This computationally motivated trut
cation is realized by introducing “open boundary conditions.” A sensible characterizat
of open boundaries has been formulated by Hedstrom [12]: No wave coming from outs
should propagate into the computational domain which is synonymous with the fact t
the amplitudes of incoming waves are constant with respect to time at the lgord@er
Hence, the TE field components at the boundary are completely specified by the outg
traveling waves associated with the characteristicgandv; possessing positive eigenval-
ues. Consequently, compatibility reasons ensure that the TE system(@is imposed by
the vs variable according to

Eio=EyiL, Eco=EaL, Bso=Bs. (4.18)

At this stage it is clear that the open boundary condition can be regarded as a special
of the irradiation situation. Energy is now irradiated from the computational domain to t
exterior. Therefore, the condition (4.17a) for the covering of the fictitious grid Cgllsan

be taken, yielding for the TE fields

Eir=E1L, Eor=EaL, Bsr = BsL. (4.19a)

Using once again the result (4.18), we obtain from (4.17b) the instruction how to cover
dummy cellsCg for the correction

DR =205 — D, (4.19b)

where for the value at the bordéxg the approximate result (4.14) can be used.
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5. NUMERICAL RESULTS

The Maxwell solver with purely hyperbolic correction is applied in two different sit:
uations. First, simulation results of a pure electromagnetic field problem are presen
Second, an electromagnetic PIC calculation is discussed, where the FV Maxwell solve
used as one part in a simulation program which solves numerically the Maxwell-Vlas
equations.

5.1. Application to a pure electromagnetic field problerhet us consider a simple
two-dimensional field problem without any symmetry for which Cartesian coordinat
X = (X1, X2) = (X, y) are suitable. It is easy to check that the TE field components

Eq1(X, y, 1) = —kk—L Sin(kLy) COQkHX — wt),
I

Ex(x,y, t) = cogk,y) sin(k;x — wt), (5.1a)
w .
Bs(x,y,t) = W cogk, y) sin(k;x — wt),

are a set of solutions of the time-dependent Maxwell equations (2.1a) and (2.1b) for wt
the divergence conditio¥ - E = 0 holds. The longitudinal and transverse wave numkgers
andk, , respectively, are related to the frequeacgccording to

w2

ke + ki = & (5.1b)
The numerical experiments are performed on the dof2ai0, 1] x [0, 1] which consists

of a unit square with an edge length of 1 m. The discretization of this computational dom
is established by a structured mesh ofsx2R0 non-orthogonal grid zones as depicted in
Fig. 4. Additionally, a refined grid of 4R 40 mesh zones will be used. In order to check
simultaneously different kinds of boundary conditions, we limit the computational doma

0.8

0.6

04

0.2

o bl L L o0 Dbl Dl ol )

0 0.2 04 0.6 0.8 1
X

FIG. 4. Discretization of the computational domain by a structured mesh of 20 non-orthogonal grid
zones.
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aty = 0 andy = 1 m by a perfectly conducting wall. This means that the transverse electri
field of the TE system vanishes there,

E1(x,0,t) = E1(x,1,t) =0, Y(X,t). (5.1c)
This leads to the requirement that the transverse wave number has to be chosen accord
k. = pm, peZ. (5.1d)

Furthermore, we prescribe irradiation of electromagnetic energy=a0 given by the
analytical values of (5.1a) at that boundary and truncate the computational domain al
cially at x =1 m. Performing numerical experiments, we chokse-k; =z (measured
per meter) and initialize the TE fields according to the analytical solution (5.1a) at tir
t =0. An overview of the numerical solution on the truncated computational domain f
the initial-boundary problem (5.1) is given in Fig. 5. There, the temporal evolution of tf

0 02 04 08 08 1
x[m) x[m]

x [m]

0 02 04 06 08 l 0 0.2 04 06 08 1
x [m] x [m]

FIG.5. Three snapshots of thg (left) andE, (right) field component recordedtat 2,t =6, andt = 10 ns.
These numerical results are computed without any correction.
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E; component (left) andE, component (right) of the TE system is depicted at the time:
t=2,t =6, andt = 10 ns, corresponding to 100, 300, and 500 iteration cycles, respective
The three (uncorrected and via the elliptic or hyperbolic approach corrected) second-o
accurate Maxwell solver implementations produce almost the same numerical results
the pure field calculation compared to the analytical solution. This again illustrates tl
for pure field calculations, the divergence errors do not dramatically influence the soluti
However, differences in the divergence constraint approximation for the three methods
be seen. For that, we define the divergence of a vectorFetdt) att =t" for the grid
zoneC; in a FV sense according to

1 1
[V-F]M:= v V-FxtMdV ~ Z—\AZLi,ﬂ(FHF{;).nLﬂ. (5.2)
G =1

Its discretel ,-error norm at the timé=t" given by

IV-FX ), = (5.3)

N
STV -FIFPv
i=1

is an appropriate and evident measure to check the quality of the divergence approxima
To get a quantitative picture, we compute this discieteerror norm ofV - E for two
different computational meshes (220 and 40x 40 grid zones). The numerical results
are presented in Fig. 6, whell& - E(x, t)||., is plotted versus time for the uncorrected
(upper), the elliptic (middle), and the purely hyperbolic (lower picture) correction approac
There, we observe that the time monitoreglerror for the 20x 20 grid calculated with
the schemes where a correction is applied lies significantly below those computed v
the uncorrected Maxwell solver. When the computational grid is refined, the error in t
corrected cases decreases in an expected manner, while in the uncorrected case no imj
ment is obtained. A direct comparison of the numerical results computed with the thi
different field solvers for the 4Q 40 grid is seen in Fig. 7. The temporal evolution of the
L,-error of V - E drops by more than a factor of four using a corrected (open circles, sol
triangles) instead of the uncorrected (solid squares) FV scheme. The hyperbolic correc
approach yields approximations nearly as accurate as the standard Boris method bas
the numerical solution of an elliptic Poisson equation with less computational effort.

5.2. Application in an electromagnetic PIC simulatiorin the following we simulate
a typical situation occurring in the field of electromagnetic PIC applications where tl
Maxwell solver is one part of a complex simulation program. Due to the numerical apprc
imation of the particle motion and the calculation of the charge density from the partic
distribution, charge errors will occur in this situation. We consider a radiating magne
dipole in thexy-plane (see Fig. 8) modeled by 36 negative charged macro particles revc
ing due to an externally applied static magnetic induc®§¥= 0.25 Vs/n¥ on a circle
with a radius of o =0.18 cm centered akg, Yo) = (49.5 cm, 49.5 cm). Each macro parti-
cle carries a charge @ = —1071° As (equivalent to 24 - 10° electrons as constituents)
and possesses an initial velocity @f=7.49 - 10’ m/s tangential to the trajectory. This
artificially high velocity was chosen to minimize space-charge effects in the circular ct
rent loop. The numerical experiments are performed for a square with an edge lengtl
1 m, discretized by a Cartesian mesh of 30000 grid zones. Open boundary conditions
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FIG.6. Temporal behavior of the discretg-error norm computed according to Eq. (5.3) for the uncorrectec
scheme (upper plot) as well as for the cases where the elliptical (middle) and purely hyperbolic (lower p
correction approaches are applied. The computations are performed on the mesh depicted in Fig. 4 and a f
refinement.

are prescribed at the four borders of the computational domain, while truncated don
conditions (cf. Subsection 4.4.4) have to be imposed on the boundaries for the hypert
correction functiond.

As for the situation where the eigenfields of the moving charges are neglected, we ex
as a consequence of the special choice of the physical parameters that a circular traje
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FIG. 7. Comparison of the discretie,-error norm computed with the uncorrected (solid squares), ellipti-
cal (open circles), and hyperbolical (solid triangles) corrected Maxwell solver implementation for $4040
computational grid.

is retained for a sufficient long period of time, even here, where the fields are calculated
self-consistent manner. This conjecture is confirmed in Fig. 8, where the actual location
the macro particles are seen at time 7 ns. Obviously, after 47.4 revolutions of each charge
the ensemble of particles are on a circle which is centered at the intersection of four adja
grid zones. We stress, however, that in general no exact solution is available for this mc
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FIG. 8. Numerical model of a magnetic dipole in thg-plane. The snapshot&t 7 ns shows the location of
the 36 negative-charged macro particles moving due to an externally applied magnetic induction on a circle
a diameter of approximately 0.36 cm.
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problem: Especially, when the charge of the particles is further increased, eigenfields
substantial and self-consistent field-particle computations are imperative. Therefore, in
following we compare numerical results obtained with an electromagnetic PIC simulat
program where three different Maxwell solver are available. Numerical simulations with t
uncorrected as well as the elliptical and the purely hyperbolic Maxwell solver are perform
where both correction techniques are incorporated into the scheme by applying a spilit
approach. The elliptic correction uses a combined ad hoc SOR and Jacobi scheme to
the Poisson equation (3.1b) on non-uniform grids [35] and is applied during the calculat
after each fifth temporal iteration cycle. In contrast, the hyperbolic correction is compu
at each time step, where we choose a value of one for the paramg@teiSubsection 3.3)
and fixa (cf. Subsection 4.4) equal to the reflection case, thatis—1.
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FIG. 9. Three snapshots of thE; field component of the magnetic dipole recorded at1, t =3, and
t =5 ns. The PIC approximation errors are corrected by using an elliptic (left column) and a purely hyperb
(right column) Maxwell solver implementation.
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A first simulation result of the self-consistent field formation of a magnetic dipole i
the xy-plane has already been presented in Fig. 1. ThereEshigeld is computed with
an uncorrected (left) and elliptic correction-based (right) Maxwell solver and recorded
the timest =1, t =3, andt =5 ns corresponding to 220, 660, and 1100 iteration cycle:
respectively. Inspecting the central contour lines of the left plot sequence, we clearly r
ognize that the uncorrected field solution runs into a highly unphysical regime. The rig
sequence of results shows the numerical solution obtained for the dipole simulation wk
the elliptic correction technique is applied after the conventional Maxwell solver. The
are the well-known contour shapes for the far-field of a magnetic dipole. In Fig. 9, a dire
comparison between the; magnetic dipole field distribution calculated with the elliptic
(left) and purely hyperbolic (right) Maxwell solver is given for three different times {,

t =3, andt =5). These plots clearly reveal that the global features as well as the detai
structure of the field distribution computed with the purely hyperbolic correction techniq
is in excellent agreement with those obtained from the standard elliptic correction approz
The comparison of the temporal evolution of the disctetenorm of V - E — p/¢o deter-

mined from Eg. (5.3) is seen for the implementations under discussion in Fig. 10. Itis clee
visible that thel,-error norm computed with the conventional uncorrected Maxwell solve
increases with respect to time, indicating that the corresponding numerical solution of
Maxwell-Vlasov equations becomes unphysical. Furthermore, we conclude from Fig.
that the PIC simulation program equipped with an elliptic as well as purely hyperbo
Maxwell solver yields a nearly constant discrétg-error norm ofV - E — p/¢p in the

course of the numerical experiment. Additionally, the result computed with the hyperbo
correction approach even lies below the one obtained with the standard elliptic correc
technique. Depending on how often the elliptic correction is performed, cost might be co
parable on regular grids. However, elliptic solvers become more expensive on unstructt
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FIG. 10. Comparison of the temporal behavior of the discrieteerror norm of V- E — p/¢, computed
according to Eq. (5.3) for three Maxwell solver implementations. The plotted results are obtained with the un
rected (solid squares), elliptical (open circles), and hyperbolical (solid triangles) corrected Maxwell solver fc
100x 100 Cartesian mesh.
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grids and on parallel computers. Notice also that the purely hyperbolic formulation is
only one of the GLM formulations which is fully relativistic like the original Maxwell
equations.

6. CONCLUSIONAL REMARKS

Numerical methods for the Maxwell equations are usually based on the hyperbolic evc
tion equations for the electromagnetic fieElandB only, where the current density enters
as source. As a consequence, one observes that the elliptic divergence constraints «
Maxwell system are only satisfied approximately. Especially in the context of electrom:
netic PIC calculations where charge conservation errors occur, the consistency with ch
density is lost. Consequently, small errors may dramatically accumulate during the sim
tion, generating wrong and unphysical numerical solutions. Hence, in those cases a sui
numerical scheme has to take care to ensure that these divergence errors do not incre
the course of time and that the consistencyWofE with the charge density is guaranteed.
To do this, we propose in this paper a scheme enforcing the divergence equations o
Maxwell system by directly incorporating these conditions into the numerical approxin
tion. For that, we introduce the new generalized Lagrange multiplier (GLM) formulatic
of the Maxwell equations which is a mathematical model allowing errors in the dive
gence constraints and charge conservation and which yields approximate solutions o
conventional Maxwell equations. In the present discussions, we restricted ourselves tc
situation where the charge conservation is erroneous, resulting in a coupled syster
the time-dependent Maxwell equations and Gauss’ law which is satisfied approximat
during the temporal evolution.

The proposed GLM formulation recovers the well-known charge correction technique
Boris [4] and also the parabolic approach of Marder [24]. The purely hyperbolic correcti
technique, however, is an interesting alternative approximation method for the charge «
servation constraint and fits in an excellent manner into the environment of explicit fie
computations based on high-resolution finite-volume schemes. Especially, this hyperb
correction ansatz is very flexible and efficient for code implementation and code runn
on computers with parallel architecture. Furthermore, our simulation results obtained fi
pure field computation as well as an electromagnetic PIC calculation clearly reveal that
hyperbolic correction approach yields approximations nearly as accurate as the stan
technique which solves an elliptic Poisson equation with less computational effort. And |
but not least, the hyperbolic formulation retains the relativistic form of the original Maxwe
equations.
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